Contact Angioedema and Rhinoconjunctivitis Caused by Dendrobaena species and Sarcophaga carnaria Used as Fishing Bait

J García-Loria,1,* R Rodríguez-Pérez,2,* A Iglesias,1 I Moneo,2 M L Caballero2

1Department of Allergology, Hospital Puerta de Hierro, Majadahonda, Madrid, Spain
2Department of Immunology, Hospital Carlos III, Madrid, Spain
*These authors contributed equally to this article.

Abstract
The flesh fly Sarcophaga carnaria is commonly used as fishing bait. Immunoglobulin (Ig) E-mediated reactions caused by the handling of this bait have been reported. The earthworm Dendrobaena species is increasingly being used as fishing bait but there have been no reported cases of allergy to this species to date. We studied a 26-year-old amateur angler who presented rhinoconjunctivitis, urticaria, and angioedema on handling S carnaria. He started to use Dendrobaena species instead but developed the same symptoms. The aim of this study was to identify the allergens involved in the patient’s clinical reactions. The study was performed using immunoglobulin (Ig) E immunoblotting and immunoblotting inhibition assays. The patient’s serum detected allergens from Dendrobaena species (of an apparent molecular weight of approximately 150, 60, 37, 24, 21 and 19 kDa) and S carnaria (approximately 70 kDa and a smear ranging from 50 to 40 kDa). The patient was diagnosed with allergy to both Dendrobaena species and S carnaria. This is the first case describing Dendrobaena species as an allergic agent.

Key words: Allergy. Dendrobaena. Fishing bait. IgE. Sarcophaga carnaria.

Resumen
La mosca Sarcophaga carnaria, se usa como cebo de pesca. Se han descrito reacciones IgE-mediadas causadas por su manipulación. La lombriz Dendrobaena sp. ha sido introducida como cebo de pesca. Hasta ahora no hay descritos casos de alergia por su manipulación. Presentamos el caso de un pescador aficionado, de 26 años, que presentó rinoconjuntivitis, urticaria y angioedema al manipular S carnaria. Al utilizar Dendrobaena presentó los mismos síntomas. El objetivo fue identificar los alérgenos implicados. El estudio se realizó mediante IgE-immunoblotting y ensayos de inhibición. El suero del paciente detectó alérgenos de Dendrobaena (peso molecular aparente alrededor de 150, 60, 37, 24, 21 y 19), y de S. carnaria (alrededor de 70 y una banda difusa entre 50 y 40 kDa). El paciente fue diagnosticado de alergia a Dendrobaena y S. carnaria.
Este es el primer caso describiendo a Dendrobaena sp. como un agente sensibilizante.

Introduction

Allergy caused by handling of worms and maggots as fishing bait has been previously described. The common earthworm Lumbricus terrestris and maggots such as the flesh fly Sarcophaga carnaria, the bee moth larvae Galleria mellonella, and Aticocot maggots (such as the fly larvae Protophormia terraenovae) have been reported as sensitizing agents responsible for rhinoconjunctivitis, contact urticaria, and asthma among anglers [1-8]. We present the case of a patient with allergy to both S. carnaria and Dendrobaena species used as fishing bait. S. carnaria (kingdom, Animalia; phylum, Arthropoda; class: Insecta; order, Diptera; family, Sarcophagidae) is found worldwide and commonly used as fishing bait. However, the unpigmented reddish earthworm Dendrobaena species (kingdom, Animalia; phylum, Annelida; class, Oligochaeta; order, Naplotaxida; family, Lumbricidae) was only recently introduced as fishing bait. Its use is growing because of its low cost, its manageable size, and its biological characteristics (high resistance to both low temperature water and hook injury). There are published cases of immunoglobulin (Ig) E-mediated bronchial asthma, rhinoconjunctivitis, and urticaria caused by the handling of S. carnaria larvae as fishing bait [9-12]; there have, however, been no reports of allergy to Dendrobaena species to date. The aim of this study was to identify the allergens involved in the clinical reactions developed by our patient on handling S. carnaria and Dendrobaena species.

Case Description

A 26-year-old glassworker and amateur fisherman without a history of allergy presented rhinoconjunctivitis; contact urticaria on the hands, forearms, and neck; facial erythema; and angioedema after a year of handling S. carnaria as fishing bait. The patient decided to replace the bait with Dendrobaena species, but he developed the same symptoms. He was completely asymptomatic when he avoided contact with these 2 species. Informed consent for the present study was obtained from the patient.

Skin prick tests were performed with a standard series of common airborne allergens (ALK-Abelló, Madrid, Spain). Histamine dihydrochloride (1 mg/mL) and saline solution were used as positive and negative controls, respectively. A response was considered positive if the largest wheal diameter was at least 3 mm greater than that produced by the negative control. Skin prick-to-prick tests were performed with Dendrobaena species and S. carnaria. Determination of specific IgE to tropomyosin was performed using the CAP system (Phadia, Uppsala, Sweden).

To identify the allergens involved in the patient’s allergy, we prepared extracts from Dendrobaena species (adult) and Sarcophaga carnaria (larvae). Briefly, 1 g of each was homogenized in a mortar with 5 mL of phosphate buffered saline and centrifuged at 4500 g for 15 minutes. The protein concentration of the supernatants obtained was determined using the Protein Quantification Kit-Rapid (Fluka Chemie AG, Buchs, Switzerland).

Aliquots of protein (15 μg) from the supernatants were analyzed by sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-PAGE) performed in 12% polyacrylamide gels and IgE immunoblotting with the patient’s serum, as previously described [13]. The pellets were resuspended in 1 mL of SDS-PAGE loading buffer and were also analyzed by SDS-PAGE and IgE immunoblotting to check whether any of the proteins were allergens.

IgE immunoblotting inhibition assays were performed by preincubating the patient’s serum for 3 hours at room temperature with the corresponding extract (15 μg of protein). Skin prick tests were positive to Cupressus arizonica, grass pollen (Phleum pratense, Lolium perene, Dactylis glomerata, Poa pratensis, Cynodon dactylon) and weeds (Plantago lanceolata, Artemisia vulgaris, Taraxacum vulgaris, and Chenopodium album). Skin prick-to-prick tests were positive to Dendrobaena species and S. carnaria. The determination of specific IgE to tropomyosin by CAP was negative. Total IgE was 1065 kU/L. The Table shows the clinical data of the patient.

The SDS-PAGE and IgE immunoblotting results for the Dendrobaena species and S. carnaria extracts are depicted in Figure 1. IgE immunoblotting revealed that the patient’s serum detected several allergens from Dendrobaena species and S. carnaria.

The allergens detected in Dendrobaena species had an apparent molecular weight of approximately 150, 60 and 37 kDa in the pellet and of approximately 24, 21 and 19 kDa in the supernatant. In the case of S. carnaria, the allergens detected in both the pellet and the supernatant had an apparent molecular weight of approximately 70 kDa and a smear ranging from 50 to 40 kDa.

We performed IgE immunoblotting inhibition assays between Dendrobaena species and S. carnaria extracts to study possible cross-reactions. As shown in Figure 2A, the 150- and 60-kDa allergens detected by the patient’s serum in the pellet from Dendrobaena species were inhibited when the serum was preincubated with a mixture of pellet and supernatant extracts of S. carnaria. On the other hand, no inhibition was observed in the extracts from S. carnaria when the serum was preincubated with the Dendrobaena species extracts, although the 50- to 40-kDa smear seemed weaker than when the uninhibited serum was used (Figure 2B).

Worms and insect larvae used as live fishing bait are sensitizers which have the potential to cause asthma, rhinoconjunctivitis, and urticaria when handled by anglers [14]. We have studied a case of allergy to 2 phylogenetically distant species: the worm Dendrobaena species and the insect S. carnaria, both used as fishing bait. The patient presented the same symptoms when he handled both species. There have been several published cases of IgE-mediated reactions caused by the handling of S. carnaria larvae, although no allergens have been described. To our knowledge, there has only been 1 published case of S. carnaria–related allergy in which allergens with a molecular weight of 70, 34, 20, and 12 kDa are mentioned [15]. IgE immunoblotting performed with the patient’s serum detected a 70-kDa allergen in both the pellet and the supernatant from S. carnaria but it did not detect the other 3 allergens.
Figure 1. Protein separation by sodium dodecyl sulfate polyacrylamide gel electrophoresis and Coomassie staining of the extracts obtained from Dendrobaena species (A) and Sarcophaga carnaria (B), and immunoglobulin (Ig) E immunoblotting performed with the patient's serum. Lane 1, pellet; lane 2, supernatant. MW indicates molecular-weight markers.

Figure 2. Immunoglobulin (Ig) E immunoblotting inhibition assay performed with Dendrobaena species and Sarcophaga carnaria. A, Dendrobaena species; IgE immunoblotting performed with patient's serum not inhibited (-) and inhibited (+) with S carnaria. B, S Carnaria; IgE immunoblotting performed with the patient's serum not inhibited (-) and inhibited (+) with Dendrobaena species. Lane 1, pellet; lane 2, supernatant.
Table. Clinical Data for the Patient Studied

<table>
<thead>
<tr>
<th>Allergens</th>
<th>SPT, mm</th>
<th>PPT, mm</th>
<th>CAP, kU/L</th>
</tr>
</thead>
<tbody>
<tr>
<td>Environment</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermaphtogoides pteronyssinus</td>
<td>negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dermaphtogoides farinae</td>
<td>negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cupressus arizonica</td>
<td>6x5</td>
<td>6x5</td>
<td></td>
</tr>
<tr>
<td>Grass</td>
<td>6x5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Weeds</td>
<td>5x5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Plantago lanceolata</td>
<td>negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Alternaria alternata</td>
<td>negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Cladosporium herbarum</td>
<td>negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Penicillium notatum</td>
<td>negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aspergillus fumigatus</td>
<td>negative</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dog and cat dander</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fishing bait</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Dendrobaena species</td>
<td>n/a</td>
<td>9x6</td>
<td></td>
</tr>
<tr>
<td>Sarcophaga carnaria</td>
<td>n/a</td>
<td>5x5</td>
<td></td>
</tr>
<tr>
<td>Other</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Shrimp tropomyosin (rPen a 1)</td>
<td></td>
<td>0.06</td>
<td></td>
</tr>
</tbody>
</table>

Abbreviations: CAP, serum-specific determination by the CAP method; n/a, not available; PPT, prick-to-prick testing; SPT, skin prick testing (mean wheal diameter).

In one report of allergy to S. Carnaria used as fishing bait described by Valsecchi et al [12], the patient changed to Lumbricus terrestris and developed no further allergic reactions, suggesting an absence of cross-reactivity between live fishing baits belonging to the phyla Annelida and Arthropoda (Diptera). Our patient was sensitized to S. carnaria but he developed the same symptoms when he replaced this bait with Dendrobaena species.

Our results indicate that there is some cross-reactivity between S. carnaria and Dendrobaena species because extracts from S. carnaria were able to inhibit the 150- and 60-kDa allergens detected by the serum’s patient in the pellet from Dendrobaena species, but not any of the other allergens. On the other hand, Dendrobaena species did not inhibit any of the allergens in S. carnaria. These results suggest that our patient has a double sensitization to both fishing baits.

In short, while several cases have been reported of IgE-mediated reactions caused by the handling of S. carnaria larvae and Lumbricus terrestris as fishing bait, this is the first report describing Dendrobaena species as an allergic agent.

References


Manuscript received August 16, 2010; accepted for publication, November 16, 2010.

María Luisa Caballero
Departamento de Inmunologia, Hospital Carlos III
Sinesio Delgado, 10. 28029 Madrid, Spain
E-mail: micsoto@hotmail.com